
Interactive and Minimal Repair
of Declarative Process Models?

Carl Corea1, Sabine Nagel1, Jan Mendling2, and Patrick Delfmann1

1 University of Koblenz-Landau, Germany
{ccorea,snagel,delfmann}@uni-koblenz.de

2 WU Vienna, Austria
jan.mendling@wu.ac.at

Abstract. We present an approach for resolving inconsistencies in declar-
ative process models while guaranteeing a minimal information loss (w.r.t.
the number of deleted elements). To this aim, we show how smallest cor-
rection sets, i.e., the smallest sets of constraints that need to be deleted
in order to resolve inconsistencies, can be computed via an application
of Reiter’s hitting set theorem. In this context, as deleting certain con-
straints might be highly sensitive or not plausible in a real-life sense, we
extend our approach with functionalities for enabling a close human-in-
the-loop interaction, such as prioritizing constraints, as well as metrics
that offer modelers insights into the impact of deleting constraints. Fur-
thermore, we implement our approach and show that our inconsistency
resolution approach outperforms existing approaches in terms of runtime
and information loss in experiments with real-life data sets.

Keywords: Declarative Process Models · Inconsistency Resolution ·
Minimal Correction Sets · Hitting Sets

1 Introduction

While declarative process models allow to specify flexible processes, the logic-
based nature of declarative constraints leaves models prone to logical inconsis-
tencies [3,5,12]. As a simple example, consider the declarative process model D1

(we will formalize syntax and semantics later), defined via

D1 ={Init(a),Response(a, b),Response(b, c),NotResponse(a, c)},

with the intuitive meaning that 1) a process must start with a task a, 2) a task a
must be eventually followed by a task b, which must 3) eventually be followed by
a task c, and 4) a task a must never be followed by a task c. D1 is inconsistent,
as it demands contradictory reactions to the occurrence of task a. Therefore, the
shown model is unsatisfiable and the inconsistency must be resolved in order to
use the model for its intended purpose of governing compliant company behavior.
? Part of the research project ”Handling Inconsistencies in Business Process Modeling“,
funded by the German Research Association (reference number: DE1983/9-1).

2 C. Corea et al.

Mind that contradictions in models of real-life complexity are difficult to spot,
since they often arise from combinations of several constraints. Here, modelers
need to be supported at design-time in order to resolve such inconsistencies.

In response, recent works [3, 4] have presented methods for inconsistency
repair. While this is a clear benefit for companies, a current limitation is that
those approaches cannot guarantee a minimal information loss, i.e., that only
the smallest possible set of constraints is actually deleted. For example, as the
approach in [4] is only an approximation algorithm, it can easily occur that twice
as many constraints are deleted compared to the optimum. Here, new methods
are needed to counteract this risk of unnecessary information loss (R1).

Furthermore, existing approaches are geared towards automated resolution.
However, as deleting constraints might be highly sensitive, automated approaches
might yield implausible results. For example, if a system computes that incon-
sistency can be resolved by deleting only one constraint, this result is of no use
if that constraint is business-critical and must be retained. This calls for a close
integration of human experts in determining suitable resolution strategies (R2).

To address the research problems raised above, the contribution of this work
is consequently twofold:

• (R1) Minimal Information Loss. We show how minimal correction sets
(MCS) can be computed via a reduction to a hitting set enumeration prob-
lem, i.e., an application of Reiter’s hitting set theorem [16]. This allows to
compute the cardinality-smallest set(s) of constraints that have to be deleted
to restore consistency, i.e., inconsistency is resolved while guaranteeing the
smallest possible information loss w.r.t. the number of deleted constraints.

• (R2) Human-in-the-loop Integration. We extend our computation ap-
proach with a human-in-the-loop perspective, allowing users to impact the
computation of minimal correction sets, e.g., by prioritizing certain con-
straints. Also, to support modelers in understanding different resolution op-
tions, novel metrics are presented that help modelers understand the impact
of their choices, e.g., the effectiveness of customized resolution strategies.

The remainder of this work is structured as follows. In Section 2, we provide
preliminaries on declarative process models and discuss limitations of related
works addressed in this paper. Section 3 presents our approach for computing
MCS via hitting sets. Our approach is then implemented and evaluated in ex-
periments with real-life data sets in Section 4. We conclude in Section 5.

2 Preliminaries and Related Works

In this section, we discuss preliminaries on declarative process models, the notion
of inconsistency in declarative models, as well as related work.

2.1 Declarative Process Models

Declarative process models are constituted of a set of constraints, that confine
the allowed behavior of company activities [14]. As opposed to traditional process
models, this allows for a high degree of flexibility within these set bounds.

Interactive and Minimal Repair of Declarative Process Models 3

Definition 1 (Declarative Process Models). A declarative process model is
a tuple M = (A,T,C), where A is a set of activities, T is a set of constraint
templates, and C is the set of actual constraints, which instantiate the template
elements in T with tasks in A.We denote M as the universe of all such models.

In this paper, we consider Declare [14], which is a declarative process mod-
eling language and notation. Declare offers easy-to-use predefined templates,
that can be parametrized with company activities in order to specify declarative
constraints. For example, the Declare constraint Response(a, b) states that
if a task a occurs, it must be eventually followed by a task b. An advantage of
Declare is that the semantics of template types can be defined with temporal
logic, allowing to exploit the amenities of temporal logic checking, while hiding
complexity from the end user. We define the semantics of Declare constraints
with the temporal logic LTLp [13]. An LTLp formula is given by the grammar

ϕ ::= a|(¬ϕ)|(ϕ1 ∧ ϕ2)|(©ϕ)|(ϕ1Uϕ2)|(©− ϕ)|(ϕ1Sϕ2).

Each formula is built from atomic propositions ∈ A (relative to a declarative
process model), and is closed under the boolean connectives, the unary tempo-
ral operators © (next) and ©− (previous), and the binary temporal operators U
(until) and S (since). For any such formula, the semantics is then defined relative
to a trace t. Due to space limitations, we omit a presentation of the concrete
semantics and refer the reader to [5]. Based on such LTLp formulae, the seman-
tics of individual Declare constraints can then be defined. A standard set of
Declare templates and corresponding semantics can be found in [3].

2.2 On the Notion of Inconsistency in Declarative Process Models

Based on the LTLp semantics, it can be verified whether a constraint c is satisfied
by a trace t by checking if c evaluates to true over t [12]. Given a declarative
model M, let TA denote the set of all possible sequences that can be constructed
based on the activities A ∈M. An evaluation of a declarative model M over a
trace t is thus a function ε : M× TA → {>,⊥}, defined via

ε(M, t) =

{
> if for all c ∈ C : c evaluates to true for t
⊥ otherwise

We define the language L of a model M as all traces that satisfy M, i.e.,

L(M) = {t ∈ TA | ε(M, t) = >}.

Thus, an inconsistent declarative process model is a model where L = ∅, i.e., it
cannot accept any traces.

Consider the exemplary declarative process models M1,M2, defined via

M1 ={Init(a),Response(a, b),NotResponse(a, b)}
M2 ={Response(a, b),NotResponse(a, b)}

4 C. Corea et al.

InM1, the constraint Init(a) confines that a trace must start with an event a.
The remaining two constraints Response(a,b) and NotResponse(a,b) would
also have to be satisfied in the same trace. As the latter two constraints are
contradictory, there can exist no trace that satisfies M1, i.e. L(M1) = ∅.

The notion of classical inconsistency was recently extended with the concept
of quasi-inconsistency [5, 6]. In the declarative model M2 there exist two "con-
tradictory" constraints, but there is no confinement regarding the occurrence of
an activity a. In result, M2 can accept an arbitrary amount of traces, i.e., any
trace that does not contain the activity a . Thus, as L(M2) 6= ∅,M2 is not classi-
cally inconsistent. Yet, the constraints inM2 are highly problematic, as they will
always be activated together, but yield contradictory conclusions. Following [5],
M2 is, therefore, quasi-inconsistent. For a formal definition, we first need some
notation on reactive constraints and constraint activation.

Considering Declare constraints such as Response(a, b), we see that such
constraints describe a form of cause and reaction relation between the tasks a and
b, i.e., given an activity a, the reaction should be b. Thus, following works such
as [2], declarative constraints can be rewritten as so-called reactive constraints.

Definition 2 (Reactive Constraints [2]). Given a declarative process model
M = (A,T,C), let α ∈ A be an activation and ϕ be an LTLp formula over A.
Then, a reactive constraint (RCon) Ψ is a pair (α,ϕ), denoted as Ψ = α⇒ ϕ.

As an example, Response(a, b) can be rewritten as a⇒ ♦b. For a constraint c,
we denote Aa(c) and Ar (c) as the respective activating and reacting activities.
For a declarative process model, if the reaction of a constraint c is an activation
to a constraint c′, we also say that the Aa(c) transitively activates c′ [5].

Consequently, we define quasi-inconsistency and issues as follows.

Definition 3 (Quasi-Inconsistent Subset [5]). For a constraint set C, a
quasi-inconsistent subset is defined as a pair (A,C), s.t. C ⊆ C, A activates C
and A ∪C |=⊥.

To clarify, we consider constraints that will a) always be activated together,
and b) yield an inconsistency, should they be activated.

Example 1. We recall M2. Then, we have the quasi-inconsistent subset q, with

q = ({a}, {Response(a, b),NotResponse(a, b)})

For a model M , the set MIS(M) is the set of minimal quasi-inconsistent
subsets, i.e., subsets where removing any constraint resolves the issue.

In this section, we have introduced the concepts of inconsistency and quasi-
inconsistency. We acknowledge that [12] also introduce the notion of conflicting
sets, which are conflicting constraints that were activated by a given trace. How-
ever, in this work, we only consider the introduced forms of "inconsistencies",
i.e., "inconsistencies" that arise independent of specific traces and need to be
resolved at design-time. For the remainder of this paper, we will refer to both
quasi-inconsistencies and "classical" inconsistencies as "issues", for readability.

Interactive and Minimal Repair of Declarative Process Models 5

We also denote MIS as all minimal quasi-inconsistent subsets and all "classical"
minimal inconsistent subsets3 by a slight misuse of notation. Basically, we are
interested in all (potential) inconsistencies, as these issues need to be resolved.

2.3 Related Works and Contributions

Consider the modelM3 in Figure 1, which has six issues that need to be resolved.
Here, several works have presented means for inconsistency resolution [3,4,12].

Response(d,b)

NotResponse(d,b)

NotResponse(a,b)

NotResponse(a,c) NotPrecedence(a,c)

NotResponse(d,c) NotPrecedence(d,c)

MIS1

MIS2 MIS3

MIS4 MIS5

MIS6

Response(b,c)

Response(a,b)

Fig. 1: Exemplary model M3, containing six minimal issues (highlighted)

A central approach is to start by deleting constraints that have the high-
est number of overlaps, as this maximizes the number of minimal issues being
resolved by deleting one constraint. Hence, approaches such as [4, 12] would
delete the constraint Response(b, c), as it is part of the most overlapping sets
(4). This resolves all issues but MIS1 and MIS6, which means two more con-
straints have to be deleted (i.e., three deletions in total). However, this is not
the optimal solution, as inconsistency could be resolved by deleting only two
constraints (Response(a, b), Response(d, b)) (these two constraints are part of
less overlaps, still, it would be an optimal solution to start with deleting these
constraints). This shows that while the existing solutions produce "minimal"
solutions/repair sets (in terms of set inclusion), they do not always yield the
cardinality-smallest solutions, i.e., they can run into local optima due to the ap-
proach designs as greedy algorithms. This can result in unnecessary information
loss4. In this work, we present an approach to compute the cardinality-smallest
set(s) of constraints that have to be deleted to restore consistency, i.e., our
approach guarantees a minimal information loss w.r.t. the number of deleted
constraints. This is achieved by means of so-called hitting sets. Please note that
the mentioned existing approaches [3, 4, 12] do not use hitting sets to resolve
inconsistencies (cf. above for the resulting limitations). Furthermore, existing
approaches [3, 4] are geared towards automated resolution. However, as delet-
ing certain constraints might be highly sensitive, such automated approaches
3 Given a model M and a corresponding constraint set C, a minimal inconsistent
subset is defined as a set m ⊆ C, s.t. L(m) = ∅ and @m′ ⊂ m with L(m′) = ∅.

4 The approach in [3] would behave analogously, except not by deleting constraints
but iteratively building a new, maximally consistent model, which could also "drop"
more constraints than necessary.

6 C. Corea et al.

might yield implausible results in a real-life sense. Here, new results are needed
that extend inconsistency resolution with a human-in-the-loop perspective. In
this regard, we, therefore, present novel means, that allow the user to impact
the computation of resolution strategies, while being supported with insights to
understand the impact of different resolution options.

In general, our work is also related to to other works that use hitting sets
for the diagnosis and repair of knowledge representation formalisms. This idea
by Reiter [16] has been applied in various other logical formalisms, e.g., first-
order logic [7], propositional logic [10] or non-monotonic logics [1]. Here, this
work is the first to investigate Reiter’s hitting set theorem in the context of
declarative process models. Also, this works introduces novel concepts towards
the "customization" of hitting set computation according to company needs, e.g.,
allowing users to define preference relations of rules as a basis for computation.

We also acknowledge that there are works investigating inconsistency reso-
lution in declarative processes at run-time [11,12], which is beyond the scope of
this report, as we focus on design-time analysis of declarative models.

3 Minimal and Interactive Repair

In this work, we present an approach to resolve inconsistencies (i.e., minimal
issues) in declarative process models by deleting (the smallest possible set of)
constraints. Importantly, as the plausibility of automatedly computed resolution
operations has to be carefully considered, the approach is geared towards a
semi-automated resolution, allowing humans to understand, evaluate and select
suitable resolution strategies. Our approach overview is shown in Figure 2. At
first, all inconsistent subsets are detected. Then, viable repair operations are
computed based on minimal correction sets, i.e., minimal hitting sets (cf. 3.1,
3.2). Last, to select suitable repair operations, our approach provides metrics
and further means to support modelers in evaluating possible solutions (cf. 3.3).

Analysis of
Documentation Installation Modelling Execution 

(if applicable)
Validation Assesment

Preparation Evaluation Documentation

!

Modelling

Environment

Decision  
Model

Error  
Feedback

Supported 
Capabilities

Terminology

Identification of inconsistent
Subsets

DETECTION ANALYSIS UNDERSTANDING SUPPORT

Determine viable repair
solutions

Metrics &  
Human-in-the-loop  
repair

Analytical evaluation/ 
Proofs for properties

Fig. 2: Approach overview

3.1 Inconsistency Resolution based on Minimal Correction Sets

For determining resolution strategies, experts need to identify which constraints
should be removed from a model to resolve all minimal issues. To avoid unnec-
essary information loss, it is especially interesting to identify minimal sets of
constraints that can be removed to resolve inconsistency. In the following, we
refer to such sets as minimal correction sets, i.e., a set of constraints that – when
deleted – resolves all minimal issues, and is minimal in terms of set-inclusion.

Interactive and Minimal Repair of Declarative Process Models 7

Definition 4 (Minimal Correction Sets). Given a constraint set C, C ⊆ C
is a minimal correction set of C, if MIS(C\C) = ∅, and ∀C ′ ⊂ C : MIS(C\C ′) 6=
∅. Let X be a constraint set or a declarative process model, we denote MCS(X)
as the set of minimal correction sets for the constraints in X.

Such minimal correction sets can be computed by considering so-called hit-
ting sets, following [16].

In set theory, a set H is called a hitting set of a set of sets S = {S1, ..., Sn}
iff H ∩ Si 6= ∅ for every i = 1, ..., n.

Example 2. Consider the set of sets S′ = {{1, 2, 3}, {1, 3, 5}, {4, 5, 6}}. Further-
more, consider the following exemplary sets H1 −H3, defined via

H1 = {1, 4} H2 = {1, 2, 3, 4, 5, 6} H3 = {1, 2, 3}.

H1 and H2 are hitting sets w.r.t. S′, as H1/2 ∩ Si 6= ∅ for all i = 1..3. However,
we see that H2 is not minimal, as we could remove several elements and H2

would still be a hitting set. Also, we see that H3 is not a hitting set for S′, as it
has no elements in common with the last inner set of S′.

To compute minimal correction sets, we consequently propose to consider
minimal hitting sets, by adapting Reiter’s hitting set theorem as follows:

Theorem 1 (Hitting Set-Based MCS (adapted from [16])). Given a con-
straint set C, C ⊆ C is a minimal correction set of C iff C is a minimal hitting
set w.r.t. MIS(C).

Example 3. Consider the following constraint set M5, defined via

M5 = NotResponse(a, b) ChainResponse(a, b) Response(a, b)

NotResponse(c, d) ChainResponse(c, d) Response(c, d)

Then we have:

MIS(M5) = {µ1, µ2, µ3, µ4}
µ1 = {NotResponse(a, b),ChainResponse(a, b)}
µ2 = {NotResponse(a, b),Response(a, b)}
µ3 = {NotResponse(c, d),ChainResponse(c, d)}
µ4 = {NotResponse(c, d),Response(c, d)}

Consider the exemplary hitting sets H4 −H6, defined via

H4 = {NotResponse(a, b),NotResponse(c, d)}
H5 = {NotResponse(c, d),ChainResponse(a, b),Response(a, b}
H6 = {NotResponse(a, b),NotResponse(c, d),ChainResponse(a, b)}.

H4−H6 are hitting sets for MIS(M5). However, H6 is not minimal, as we could remove
ChainResponse(a, b) and H6 would still be a hitting set. Correspondingly, only H4

and H5 are minimal correction sets for M5.

8 C. Corea et al.

While minimality of hitting sets enforces that the hitting sets are not re-
ducible, this does not mean "smallest" per se. In the scope of deleting only
the smallest possible amount of constraints, it could, however, be interesting to
consider the cardinality-smallest minimal correction sets.

Definition 5 (Smallest viable repair). Given a declarative process model M
and the set of minimal correction sets MCS(M), the set of smallest minimal cor-
rection sets is defined as MCSMIN (M) = {S ⊆ MCS(M) : |S| = min(MCS(M))}.

Corollary 1. The smallest possible number of constraints that have to be deleted
from a declarative model M to resolve all minimal issues is min(MCS(M)).

In turn, this allows to present users a list of all possible smallest viable repairs.
In this section, we have presented means to compute minimal correction sets

based on hitting set enumeration. While this approach can be used to identify
the cardinality-smallest sets of constraints for inconsistency resolution, there is
still a major conceptual problem, namely that of plausibility: Even if algorithms
can compute a (smallest) set of constraints that could be deleted to resolve the
inconsistency, this does not mean that these solutions are plausible in a real-life
sense. We therefore propose to extend inconsistency resolution with a human-
in-the-loop perspective.

3.2 Human-in-the-loop Features

To allow for a human-in-the-loop integration, repair operations should not be
automatedly applied, but rather recommended to the user. Also, experts should
be able to influence or constrain the actual computation of viable correction
sets. Therefore, we raise the following two requirements for a human-in-the-loop
integration in inconsistency resolution:

1. To compute a recommendation of repair operations, it should be possible to
rank minimal corrections, e.g., by an arbitrary quality metric.

2. The computation of which constraints to delete should be relative to a user-
definable configuration, e.g., by allowing to prohibit the deletion of certain
constraints or provide superiority relations.

As motivated in Section 2.3, related work on inconsistency resolution in
declarative process models cannot satisfy these requirements. We consequently
address these issues in the following.

First, via Definition 5, correction sets can already be ranked by their size.
Next to the correction set size, this can be generalized for arbitrary measures γ
to allow for a general ranking of correction sets.

Definition 6 (γ-Repair Ranking). Let a declarative process model M and
the set of minimal correction sets MCS(M). Then, considering a measure γ :
MCS(M)→ R∞≥0 that assigns to a minimal correction set a non-negative numer-
ical value, a γ-repair ranking over all m ∈ MCS(M) is any ranking 〈m1, ...,mn〉
that satisfies γ(m1) ≤ ... ≤ γ(mn).

Interactive and Minimal Repair of Declarative Process Models 9

Thus, this ranking can sort all MCS relative to a measure γ. Importantly,
the semantics of the ranking are defined such that the ranking sorts all minimal
correction sets from "best" to "worst" option, relative to γ.

Continuing, it should be possible to confine the deletion of certain constraints
in order to leverage the computation of plausible correction sets following re-
quirement 2. Here, we consider whitelists, i.e., a whitelist W ⊆ M is a list of
constraints not to be deleted. Intuitively, a whitelist can "block" certain mini-
mal correction sets, as these could include whitelisted constraints. Therefore, it
is necessary to provide means to present users with the (next) best viable repair,
while also considering the whitelist. To this aim, we adapt the notion of small-
est viable repairs and extend this for arbitrary quality measures. This allows to
determine the set of best possible γ-repairs relative to a whitelist.

Definition 7 (Best Viable γ-Repair). Given a declarative process model M,
a measure γ : MCS(M) → R∞≥0 that assigns to a minimal correction set a non-
negative numerical value, and a whitelist W ⊆M, the best viable γ-repair w.r.t.
W is defined as MCSWγ (M) = {S ⊆ MCS(M) | ∀s ∈ S : @x 6∈ S s.t. γ(x) <
γ(s), and s 6∈W}.

The best viable γ-repair thus finds the "best" minimal correction sets w.r.t.
a measure γ, (e.g., the correction set size) while also considering the whitelist.
Given a declarative process model M and a measure γ, we denote the set of best
viable γ-repairs as BCSγ .

Example 4. Consider the minimal correction sets MCS1 −MCS4:

MCS1 = {NotResponse(a,b),NotResponse(c, d)}
MCS2 = {NotResponse(a,b),ChainResponse(c, d), {Response(c, d)}.
MCS3 = {ChainResponse(a, b),Response(a, b),ChainResponse(c, d),

Response(c, d)}.
MCS4 = {NotResponse(c, d),ChainResponse(a, b),Response(a, b)}

Assume a whitelistW = {NotResponse(a,b)}, i.e., this constraint should
not be deleted. This prohibits to select the correction sets MCS1 and MCS2,
as deleting the corresponding constraints would violate the whitelist constraints.
Considering again the correction set sizes, i.e., γ(M) = |M |, the best viable γ-
repair BCSγ would therefore be BCSγ = {MCS4}. Note that MCS3 is not part
of the best viable repair: While it satisfies the whitelist constraints, it does not
satisfy the first condition that there should be no other remaining correction sets
with lower γ value (here: set size).

Intuitively, a large whitelist might overly restrict the set of viable γ-repairs.
Thus, next to entirely blocking certain constraints in a binary manner, model-
ers should rather also have the possibility of a more fine-grained configuration
that allows for more flexibility. Therefore, we propose to allow users to weight
constraints, and calculate the fitting correction sets accordingly.

10 C. Corea et al.

Definition 8 (Weighted Declarative Process Model). A weighted declar-
ative process model is a tuple M = (A,T,C, w), where A is a set of activities,
T is a set of constraint templates, C is the set of actual constraints, which in-
stantiate the template elements in T with tasks in A, and w : C → R∞≥0 is a
weighting function for constraints.

A weighted declarative process model extends declarative models with defin-
able constraint weights. In order to allow modeling superiority relations between
constraints, arbitrary weights can be defined manually or derived automatically.
This allows to compute weighted correction sets.

Definition 9 (Correction Set Weight). Given a weighted declarative process
model M = (A,T,C, w) and the corresponding minimal correction sets MCS(C),
the weight w(M) of any M ∈ MCS(C) is defined as

∑
c∈M w(c).

As the correction set weight can essentially be used as an assessment function
γ for correction sets, it is therefore possible to compute a repair ranking via
Definition 6 using the correction set weights, i.e., a larger correction set weight
indicates a higher "cost" to remove this correction set.

Example 5. We recall the correction sets MCS1−MCS4 from Example 4. Fur-
thermore, assume the expert has determined the following constraint weights:

NotResponse(a, b) = 3 ChainResponse(a, b) = 1

Response(a, b) = 1 NotResponse(c, d) = 3

ChainResponse(c, d) = 1 Response(c, d) = 1

In the example, the expert has prioritized two constraints. In turn, we have that

w(MCS1) = 3 + 3 = 6 w(MCS2) = 3 + 1 + 1 = 5

w(MCS3) = 1 + 1 + 1 + 1 = 4 w(MCS4) = 3 + 1 + 1 = 5.

We see that while MCS1 is smaller than MCS2-MCS4 (and in general it would
be favorable to select smaller correction sets), the "costs" of selecting MCS1

are higher as this would mean to delete two highly prioritized constraints. This
information can thus be used for considering the trade-off between selecting
correction sets of smaller size or keeping constraints of higher priority.

3.3 Understanding Support

In the previous section, we introduced means to enable a close human-in-the-
loop integration. While this allows users to provide a fine-grained configuration
for correction set computation, it also places an increased pressure on the human
to ultimately choose which correction sets to select. Given that there can easily
be multiple best viable repairs, users must be supported in understanding the
consequences of choosing between these correction sets, in order to determine

Interactive and Minimal Repair of Declarative Process Models 11

suitable resolution strategies. We, therefore, propose a metric to assess the qual-
ity of a correction set selection, as well as means to understand the behavioral
changes resulting from applying a certain correction set, explained as follows.

Assuming a modeler is comparing the sizes of different correction sets, a
smaller correction set can in general be considered as better than a larger cor-
rection set. However, it might not be plausible to apply the smallest correction
set, as a user might deem that the respective constraints must be kept. Thus,
the user might be forced to select a larger correction set. However, if the next
viable correction set is too large, a user might have to carefully consider whether
keeping certain constraints is "worth" deleting a (much) higher number of other
constraints. Especially when considering correction set measures other than the
size, e.g., complex correction set weights, deciding and balancing such a deci-
sion is a difficult task for experts. Here, we propose to compute distance-based
metrics to support users in understanding the trade-off between different choices.

For a declarative modelM, consider any quality measure γ : MCS(M)→ R∞≥0,
where a higher value indicates a higher "cost" of removing the individual cor-
rection set. Then, the smallest possible cost is the minimum over all best vi-
able γ-repairs BCSγ(M), i.e., the smallest possible cost (w.r.t. γ) MINγ(M)
= minB∈BCSγ(M)γ(B). This allows to compute an absolute distance metric for
assessing arbitrary correction sets.

Definition 10 ((Distance-based) Additional Correction Set Costs from
Baseline). Given a declarative process model M and a correction set measure γ,
the additional cost caddγ of any correction set M relative to the smallest possible
cost is defined as caddγ (M,M) = γ(M)−MINγ(M).

This metric provides an assessment of correction sets for determining the addi-
tional costs relative to the smallest possible costs w.r.t. γ.

Example 6. We recall the correction set MCS1−MCS4 from Example 4. Judg-
ing from a set size perspective, i.e., γ(M) = |M |, we have that γ(MCS1) = 2,
γ(MCS2) = γ(MCS4) = 3 and γ(MCS3) = 4. Thus, the smallest possible costs
MINγ are 2. Here, the additional costs of selectingMCS2 orMCS4 would be 1,
and 2 for selecting MCS3. If the additional costs from the baseline become too
large, they might outweigh the costs of keeping certain constraints. The proposed
distance-based metric can thus support users in making an informed decision as
to whether the whitelist or rule weights should be altered.

While the distance-based additional cost metric can produce valuable in-
sights, an ultimate selection of specific correction sets might not only depend
on numeric factors such as the number of deleted constraints, but rather on
the actual behavioral consequences following the deletion of a specific correction
set. Here, experts need to be supported in understanding the behavioral con-
sequences of the different available options. To this aim, we propose so-called
fragment-based language profiles in order to present modelers the exact differ-
ence in behavioral changes for different resolution options.

To understand behavioral changes, given a declarative model M, one could
theoretically compute the language of M and the language of any M’ derived

12 C. Corea et al.

by deleting a set of constraints from M. Then, one could simply compare the
languages of M and M’ in order to identify all behavioral changes, i.e., differ-
ences in accepted traces. However, this is not feasible, as the languages can be
infinitely large. Instead, we propose to consider only fragments of the possible
languages, explained as follows.

Consider the constraint set M = {Response(a, b),NotResponse(a, b)},
which is quasi-inconsistent. Then, consider a correction set C = {Response(a, b)},
indicating that this constraint could be deleted to resolve the issue in M. The
question then arises which behavioral changes would follow deleting this con-
straint, i.e., given a model M’ = M \C, what would be the difference L(M ′)−
L(M)? Regardless of any actual or possible trace for M, in the example, any
changes in language for M’ only apply for any trace that contains a or b. For
instance, a trace cde would behave identically for M and M’, whereas the trace
a could not satisfy M but possibly satisfy M’. Therefore, only the permutations
of the distinct events within the correction set constraints need to be considered.
For example, for the above correction set C = {Response(a, b)}, the distinct
events are a, b, so all possible event combinations, i.e., trace fragments, would be
a, b, ab, ba. By evaluating these fragments against the original modelM and a cor-
responding altered modelM’, changes in the different language profiles following
a deletion of the correction set relative to the original rule base can be identi-
fied, as shown in Figure 3. By deleting the correction set C = {Response(a, b)},
the two trace fragments a and ba would become possible (which were not possi-
ble before). The expert can thus inspect whether this is deemed as appropriate
behavior. For example, if the sequence ba should never occur in the company
processes, the expert could see that the current correction set would result in
unwanted behavior, and seek for a different solution.Correction Set C: {Response(a,b)}

Trace Fragments M M’ = M\C

a
b

ab
ba

M: {Response(a,b), NotResponse(a,b)}

Fig. 3: Fragment-based visualization of behavioral changes

To compute the actual behavioral differences between the models, we encode
the satisfiability of the individual trace fragments relative to a model as a so-
called language profile. Let a finite list of trace fragments be t = (t1, ..., tn).
Then, for a model M , a language profile is a 1 × n matrix

λM t =


λt1
...
λtn

 ,with every λti =

{
1, if M |= ti

0 otherwise

Interactive and Minimal Repair of Declarative Process Models 13

Definition 11 (Behavioral Change Profile). Given a set of trace fragments
t and two models M,M ′, the behavioral change profile is defined as λM t−λM ′t,
where an index 1 indicates a change in behavior, and an index 0 indicates an
identical behavior of the two models for the corresponding trace fragment.

Example 7. Consider the trace fragments and models M,M ′ shown in Figure 3.
Then, behavioral change profile b = [1, 0, 0, 1] (transposed), indicating a behavior
change for the trace fragments a and ba.

Considering behavioral change profiles provides important insights to mod-
elers, as it enables experts to understand the changes in behavior between two
models, e.g., to inspect whether deleting certain constraints could lead to un-
wanted or non-compliant process behavior.

A possible limitation of applying behavioral change profiles could be the
amount of fragments that need to be considered. For correction sets and the
number of contained events, the number of permutations/fragments that need
to be computed could grow factorial. However, this is only a problem if the
correction sets would contain a very high number of constraints. Based on the
overall goal to mitigate unnecessary deletions of constraints, our approach in-
tuitively favors smaller correction sets by design. To anticipate our empirical
results from Section 4, we also found that correction sets were generally small
for real-life data sets, i.e., 3-5 constraints, of which only the distinct events have
to be considered. Also, only fragments that contain at least one activation over
the constraints in the correction set need to be considered, as traces without an
activation will not be affected by the deletion of the correction set. Therefore,
the number of fragments can be further confined, e.g., in Figure 3, the trace b
would technically not need to be considered. Thus, the computation of behav-
ioral change profiles is feasible for smaller correction sets, e.g., as in the analyzed
real-life data sets (cf. Section 4). For settings with a large number of fragments,
efficient algorithms should be investigated in future work.

4 Tool Support and Evaluation

We implemented our inconsistency repair approach as a proof-of-concept. The
project can be viewed online5. Also, an online-demo is available6. Here, users
can upload their declarative models, view the model as a 3d-graph, scan for any
minimal issues and compute minimal correction sets directly in the browser. The
computation of minimal issues is based on our previous work in [5].

At the core, our approach is strongly dependent on the performance of the
hitting set enumeration. Fortunately, this computation task has gained recent
momentum and powerful enumeration algorithms are available [8, 15]. In our
implementation, we integrated the PySat library7 for computing hitting sets,
5 https://bit.ly/38kyxD0
6 https://bit.ly/38lSU2N
7 https://pysathq.github.io/docs/html/api/examples/hitman.html

https://bit.ly/38kyxD0
https://bit.ly/38lSU2N
https://pysathq.github.io/docs/html/api/examples/hitman.html

14 C. Corea et al.

which has been broadly studied and evaluated. However, these libraries have
been mostly tested in more theoretical contexts, such as SAT solving.

To evaluate the plausibility of applying our proof-of-concept in a BPM set-
ting, we conducted runtime experiments with real-life data-sets from the Busi-
ness Process Intelligence (BPI) Challenge8. Here, we used data sets from the
last four years, i.e., logs of a loan application process (BPI 17, 31.509 cases), a
governmental funding process (BPI 18, 43.809 cases), a purchase order process
(BPI 19, 251.734 cases), and a domestic travel expense refund process (BPI 20,
10.500 cases). From these logs, we mined Declare models using the declarative
process discovery tool Minerful [3]. As mining parameters, we selected a support
factor of 75%, as well as confidence and interest factors of 12.5%, following the
experiment setup in [3]. Note that as shown in [5], these parameters allow for
contradicting constraints to be added to the initial model, which is needed for our
evaluation. In the future, it might be interesting to further examine the effects
of mining parameters on the resulting inconsistencies and repeat the evaluation
with different parameter configurations. We applied our proof-of-concept imple-
mentation to all models to compute the smallest viable repairs. As a baseline, we
compared our approach to the approach in [4] (approximation algorithm) to test
how many unnecessary deletions could be avoided by using an exact approach
as proposed in this work9. The experiments were run on a machine with 3 GHz
Intel Core i7 processor, 16 GB RAM (DDR3) under macOS. Table 1 shows the
experiment results for the analyzed real-life data sets. As the model mined from
the BPI19 log did not yield any minimal issues, it was omitted for readability.

Log Constraints | # of MIS
of Deleted Constraints Runtime

Baseline [4] | This work 4 Baseline [4] | This work 4

BPI 17 305 28954 5 3 40% (2) 92243ms 30782ms 67%

BPI 18 70 25303 7 4 43% (3) 18093ms 13733ms 24%

BPI 20 357 747 7 5 29% (2) 1952ms 795ms 59%

Table 1: Overview of evaluation results for the analyzed real-life data sets

For all declarative models, our algorithm was able to resolve all minimal issues
by deleting less constraints compared to the baseline from [4]. More specifically,
the information loss could be lowered by up to 43% (BPI 18). The runtime of
our algorithm was also lower for all cases, with a time reduction of up to 67%
(BPI 17). Thus, for the analyzed real-life data sets, our proposed approach was

8 https://icpmconference.org/2020/bpi-challenge/
9 We acknowledge that the approach in [3] could have also been considered as a base-
line; however, that approach cannot resolve quasi-inconsistencies and is therefore not
fully comparable. Also, as the approach in [3] is also an approximation algorithm, it
can be expected to also not compute the smallest possible number of deletions for
all cases, which is why we consider the selected baseline [4] as representative.

https://icpmconference.org/2020/bpi-challenge/

Interactive and Minimal Repair of Declarative Process Models 15

noticeably faster, and could reduce the number of deletions, i.e., resolve incon-
sistency with less information loss. Regarding the reduced number of deletions,
this result is generalizable, as existing methods are prone to follow a non-optimal
solution due to running into local optima (cf. Section 2.3). Thus, our approach
guarantees to delete less or equal amounts of constraints for any model com-
pared to [3,4,12]. Regarding runtime, we do not see a conceptual reason for the
faster results, therefore, more experiments are needed in future works. The faster
runtime could be attributed to the use of the PySat library, which might have
faster inconsistent subset computation than [4].

5 Conclusion

In this paper, we have presented an approach for minimal and interactive in-
consistency repair of declarative process models, where users can customize the
computation of repair solutions and are supported in assessing different viable
options with metrics and behavioral change analysis. Our evaluation indicates
that our proposed approach can outperform existing means w.r.t. runtime and
information loss. In this context, we see the following limitations of our work.

Our work implicitly uses the number of deleted constraints as an information
loss measure. Here, other information loss measures have been investigated [9]
and might be applicable for temporal logics. For example, instead of minimizing
the number of deleted constraints, it could be beneficial to delete those con-
straints that have a low impact on the number of allowed traces. Note, however,
that our approach already supports modelers towards this aim via behavioral
change profile analysis of possible repairs.

Furthermore, our work only considers repair via deletion. While we argue that
this can be plausible in the scope of inconsistency resolution, other change pat-
terns such as weakening have also been proposed [9] and should be investigated
in future work (e.g., relaxing a constraint ChainResponse to Response).

A central limitation of using the proposed approach based on hitting set di-
agnosis is that the constraints are viewed as abstract elements of a set. Here, it
might be necessary to develop further means for distinguishing minimal incon-
sistent subsets in Declare based on the specific temporal constraints. In this
way, it would be possible to further assess the severity of inconsistencies and
to implement a more fine-grained prioritization of detected problems. In this
context, it is also noteworthy that this work is limited to standard Declare
templates with at most two parameters. Thus, it should be investigated how
arbitrary constraints (e.g., using logical operators) must be handled, especially
regarding their effect on behavioral changes.

In this work, the repair was geared towards inconsistencies. For future work,
we aim at extending our approach to also consider other types of problematic
structures in declarative models, such as hidden dependencies [17]. For any type
of minimal structure, it can be expected that computing "minimal repair sets"
via Reiter’s hitting set theorem will be applicable. We aim to evaluate our pro-
posed approach in experiments with human participants, especially in regard

16 C. Corea et al.

to the cognitive effects of the proposed metrics and behavioral change analysis.
Also, we aim to implement and evaluate our proposed approach of behavioral
change profile analysis.

References

1. Brewka, G., Thimm, M., Ulbricht, M.: Strong inconsistency. Artificial Intelligence
267, 78–117 (2019)

2. Cecconi, A., Di Ciccio, C., De Giacomo, G., Mendling, J.: Interestingness of traces
in declarative process mining: The janus ltlpf approach. In: 16th Int. Conference
on BPM, Sydney, Australia, 2018. LNCS, vol. 11080, pp. 121–138. Springer (2018)

3. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies
and redundancies in declarative process models. Inf. Systems 64, 425–446 (2017)

4. Corea, C., Deisen, M., Delfmann, P.: Resolving inconsistencies in declarative pro-
cess models based on culpability measurement. In: Proceedings der 14. Int. Tagung
der WI, Siegen, Germany, 2019. pp. 139–153. AISeL (2019)

5. Corea, C., Delfmann, P.: Quasi-inconsistency in declarative process models. In:
BPM Forum, Vienna, Austria, 2019. Lecture Notes in Business Information Pro-
cessing, vol. 360, pp. 20–35. Springer (2019)

6. Corea, C., Thimm, M.: On quasi-inconsistency and its complexity. AI 284 (2020)
7. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-based diag-

nosis of configuration knowledge bases. Art. Intelligence 152(2), 213–234 (2004)
8. Gainer-Dewar, A., Vera-Licona, P.: The minimal hitting set generation problem:

Algorithms and computation. SIAM J. Discret. Math. 31(1), 63–100 (2017)
9. Grant, J., Hunter, A.: Measuring consistency gain and information loss in stepwise

inconsistency resolution. In: European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty. pp. 362–373. Springer (2011)

10. Jabbour, S.: On inconsistency measuring and resolving. In: 22nd European Confer-
ence on Artificial Intelligence, The Hague, Netherlands, 2019. Frontiers in Artificial
Intelligence and Applications, vol. 285, pp. 1676–1677. IOS Press (2016)

11. López, M.T.G., Gasca, R.M., Rinderle-Ma, S.: Explaining the incorrect tempo-
ral events during business process monitoring by means of compliance rules and
model-based diagnosis. In: 17th IEEE International Enterprise Distributed Object
Computing Conference Workshops, Vancouver, Canada, 2013. pp. 163–172. IEEE
Computer Society (2013)

12. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime veri-
fication of ltl-based declarative models. In: 2nd Int. Conf. on Runtime Verification,
San Francisco, USA, 2011. LNCS, vol. 7186, pp. 131–146. Springer (2011)

13. Markey, N.: Past is for free: on the complexity of verifying linear temporal prop-
erties with past. Acta Informatica 40(6), 431–458 (2004)

14. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: 11th Int. Enterprise Distributed Object Comput-
ing Conf., Annapolis, USA, 2007. pp. 287–300. IEEE Computer Society (2007)

15. Pill, I.H., Quaritsch, T., Wotawa, F.: On the practical performance of minimal
hitting set algorithms from a diagnostic perspective. International Journal of Prog-
nostics and Health Management 7(2) (2016)

16. Reiter, R.: A theory of diagnosis from first principles. AI 32(1), 57–95 (1987)
17. De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Discovering hidden depen-

dencies in constraint-based declarative process models for improving understand-
ability. Information Systems 74, 40–52 (2018)

	Interactive and Minimal Repairof Declarative Process Models

